A note on elliptic coordinates on the Lie algebra e(3)

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2006 J. Phys. A: Math. Gen. 39 L571
(http://iopscience.iop.org/0305-4470/39/38/L01)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.106
The article was downloaded on 03/06/2010 at 04:50

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A note on elliptic coordinates on the Lie algebra $e(3)$

A V Tsiganov
St. Petersburg State University, St. Petersburg, Russia
E-mail: tsiganov@mph.phys.spbu.ru

Received 3 July 2006
Published 5 September 2006
Online at stacks.iop.org/JPhysA/39/L571

Abstract

We introduce elliptic coordinates on the dual space to the Lie algebra $e(3)$ and discuss the separability of the Clebsch system in these variables. The proposed Darboux coordinates on $e^{*}(3)$ coincide with the usual elliptic coordinates on the cotangent bundle of the two-dimensional sphere at the zero value of the corresponding Casimir function.

PACS numbers: $02.30 . \mathrm{Ik}, 02.30 . \mathrm{Uu}, 02.30 . \mathrm{Zz}, 02.40 . \mathrm{Yy}, 45.30 .+\mathrm{s}$

The Lie algebra $e(3)=s o(3) \oplus \mathbb{R}^{3}$ of the Lie group of Euclidean motions of \mathbb{R}^{3} is a semidirect sum of an algebra $\operatorname{so}(3)$ and an Abelian ideal \mathbb{R}^{3}. For convenience we shall use the invariant inner product to identify the dual of the Lie algebra, namely $e^{*}(3)$, with the Lie algebra $e(3)$.

On the dual space $e^{*}(3)$ with coordinates $J=\left(J_{1}, J_{2}, J_{3}\right) \in \operatorname{so}(3) \simeq \mathbb{R}^{3}$ and $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ the Lie-Poisson bracket is defined by

$$
\begin{equation*}
\left\{J_{i}, J_{j}\right\}=\varepsilon_{i j k} J_{k}, \quad\left\{J_{i}, x_{j}\right\}=\varepsilon_{i j k} x_{k}, \quad\left\{x_{i}, x_{j}\right\}=0, \tag{1}
\end{equation*}
$$

where $\varepsilon_{i j k}$ is the sign of the permutation (ijk) of (123). The Lie-Poisson bracket (1) is degenerated and has two Casimir functions

$$
\begin{equation*}
A=|x|^{2} \equiv \sum_{k=1}^{3} x_{k}^{2}, \quad B=\langle x, J\rangle \equiv \sum_{k=1}^{3} x_{k} J_{k} \tag{2}
\end{equation*}
$$

Here $\langle x, J\rangle$ stands for the standard Euclidean scalar product in \mathbb{R}^{3}. The generic symplectic leaf,

$$
\begin{equation*}
\mathcal{O}_{a b}=\left\{x, J: A=a^{2}, B=b\right\}, \tag{3}
\end{equation*}
$$

is a four-dimensional symplectic manifolds, which is topologically equivalent to the cotangent bundle $T^{*} \mathbb{S}^{2}$ of the two-dimensional sphere $\mathbb{S}^{2}=\left\{x \in \mathbb{R}^{3},|x|=a\right\}[1]$.

If $b=0$, then there exists a symplectic transformation

$$
\begin{equation*}
\rho:(p, x) \rightarrow J=p \wedge x, \quad J_{i}=\sum_{j, k=1}^{n=3} \varepsilon_{i j k} p_{j} x_{k} \tag{4}
\end{equation*}
$$

which identify $T^{*} \mathbb{S}^{2} \subset T^{*} \mathbb{R}^{3}$ and $\mathcal{O}_{a 0}$. Here $p \wedge x$ means the standard Euclidean cross product in \mathbb{R}^{3} and vector p is canonically conjugated to x momenta in $T^{*} \mathbb{R}^{3},\left\{p_{i}, x_{j}\right\}=\delta_{i j}$, such that $\langle p, x\rangle=0$.

If $b \neq 0$, the symplectic structure of manifold $\mathcal{O}_{a b}$ differs from the standard symplectic structure of $T^{*} \mathbb{S}^{2}$ by a magnetic term proportional to b [1].

The aim of this letter is to describe this magnetic term with the help of elliptic coordinates on the sphere \mathbb{S}^{2} lifted to the Darboux variables on the manifold $e^{*}(3)$ by $b \neq 0$.

The elliptic coordinates u_{1}, u_{2} on \mathbb{S}^{2} with parameters $\alpha_{1}<\alpha_{2}<\alpha_{3}$ are defined as roots of the equation

$$
\begin{equation*}
e(\lambda)=\sum_{j=1}^{3} \frac{x_{j}^{2}}{\lambda-\alpha_{j}}=\frac{a^{2}\left(\lambda-u_{1}\right)\left(\lambda-u_{2}\right)}{\varphi(\lambda)}=0, \tag{5}
\end{equation*}
$$

where $\varphi(\lambda)=\prod_{j=1}^{3}\left(\lambda-\alpha_{j}\right)$ and $|x|=a$, see [2]. Like the elliptic coordinates in \mathbb{R}^{3}, the elliptic coordinates on \mathbb{S}^{2} are also orthogonal and only locally defined. They take values in the intervals

$$
\begin{equation*}
\alpha_{1}<u_{1}<\alpha_{2}<u_{2}<\alpha_{3} \tag{6}
\end{equation*}
$$

By using the Lie-Poisson bracket (1) we can prove that elliptic coordinates $u_{1,2}$ and variables

$$
\begin{equation*}
\pi_{1,2}^{0}=h\left(u_{1,2}\right), \quad h(\lambda)=\frac{1}{2 a^{2}} \sum_{j=1}^{3} \frac{x_{j}(x \wedge J)_{j}}{\lambda-\alpha_{j}} \tag{7}
\end{equation*}
$$

satisfy the following relations:

$$
\begin{equation*}
\left\{u_{1}, u_{2}\right\}=0, \quad\left\{\pi_{i}^{0}, u_{j}\right\}=\delta_{i j}, \quad\left\{\pi_{1}^{0}, \pi_{2}^{0}\right\}=\frac{\mathrm{i} b}{4 a} \frac{u_{2}-u_{1}}{\sqrt{\varphi\left(u_{1}\right) \varphi\left(u_{2}\right)}} \tag{8}
\end{equation*}
$$

These relations may be easily obtained by means of the Poisson brackets between the generating functions $e(\lambda)$ and $h(\mu)$:

$$
\begin{aligned}
& \{e(\lambda), e(\mu)\}=0, \quad\{e(\lambda), h(\mu)\}=-a^{-2} e(\lambda) e(\mu)-\frac{e(\lambda)-e(\mu)}{\lambda-\mu} \\
& \{h(\lambda), h(\mu)\}=\frac{b}{4 a^{2}} \frac{x_{1} x_{2} x_{3}(\lambda-\mu)\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{3}-\alpha_{1}\right)}{\varphi(\lambda) \varphi(\mu)}
\end{aligned}
$$

If $b=0$ relations (8) yield the well-known fact that variables $u_{1,2}$ and $\pi_{1,2}^{0}$ are the Darboux coordinates on the manifold $T^{*} \mathbb{S} \simeq \mathcal{O}_{a 0}$.

The coordinates u_{i} and the parameters α_{j} can be subjected to a simultaneous linear transformation $u_{i} \rightarrow \beta u_{i}+\gamma$ and $\alpha_{j} \rightarrow \beta \alpha_{j}+\gamma$, so it is always possible to choose

$$
\alpha_{1}=0, \quad \alpha_{2}=1, \quad \alpha_{3}=k^{2}>1
$$

Using relations (8) and this choice of parameters α_{j} we can prove the following:
Proposition 1. If $b \neq 0$, elliptic coordinates $u_{1,2}$ (5) and the corresponding momenta

$$
\begin{equation*}
\pi_{1,2}=\pi_{1,2}^{0}-b f_{1,2}, \quad f_{1,2}=\frac{u_{1,2}}{2 a \sqrt{\varphi\left(u_{1,2}\right)}} F\left(\frac{\sqrt{\boldsymbol{k}^{2}-u_{2,1}}}{\boldsymbol{k}}, \frac{\boldsymbol{k}}{\boldsymbol{k}^{2}-1}\right) \tag{9}
\end{equation*}
$$

form a complete set of the Darboux variables on the manifold $e^{*}(3)$

$$
\left\{u_{1}, u_{2}\right\}=\left\{\pi_{1}, \pi_{2}\right\}=0, \quad\left\{\pi_{i}, u_{j}\right\}=\delta_{i j}
$$

which are real variables in their domain of definition (6). Here $F(z, k)$ is incomplete elliptic integral of the first kind, which is identical to the inverse function of the elliptic Jacobi function $\operatorname{sn}(z, k)[3]$.

Proof. The functions $f_{1,2}$ depend on the coordinates $u_{1,2}$ and, therefore, we have to verify one relation only
$\left\{\pi_{1}, \pi_{2}\right\}=\left\{\pi_{1}^{0}, \pi_{2}^{0}\right\}-b\left\{\pi_{1}^{0}, f_{2}\right\}+b\left\{\pi_{2}^{0}, f_{1}\right\}=\left\{\pi_{1}^{0}, \pi_{2}^{0}\right\}-b\left(\frac{\partial f_{2}}{\partial u_{1}}-\frac{\partial f_{1}}{\partial u_{2}}\right)=0$.
This relation follows from (8) and properties of the incomplete elliptic integral of the first kind $F(z, k)$.

So, equations (5), (7) and (9) define elliptic variables u and π on $e^{*}(3)$ as functions on initial variables x and J. The inverse transformation $(u, \pi) \rightarrow(x, J)$ reads as

$$
\begin{equation*}
x_{j}=a \sqrt{\frac{\left(\alpha_{j}-u_{1}\right)\left(\alpha_{j}-u_{2}\right)}{\left(\alpha_{j}-\alpha_{m}\right)\left(\alpha_{j}-\alpha_{n}\right)}}, \quad J_{j}=a^{-2}\left(b x_{j}+(z \wedge x)_{j}\right) \tag{10}
\end{equation*}
$$

where $m \neq j \neq n$ and entries of the vector z are given by

$$
z_{j}=\frac{2 x_{j}}{u_{1}-u_{2}}\left(\frac{\varphi\left(u_{1}\right)\left(\pi_{1}+b f_{1}\right)}{\alpha_{j}-u_{1}}-\frac{\varphi\left(u_{2}\right)\left(\pi_{2}+b f_{2}\right)}{\alpha_{j}-u_{2}}\right) .
$$

Like the elliptic coordinates in \mathbb{R}^{n} and on \mathbb{S}^{n} [2], the elliptic variables on $e^{*}(3)$ may be successfully exploited in the theory of integrable systems. For instance, substituting expressions (10) into the quadratic Hamiltonian

$$
H=\frac{1}{2}\left(J_{1}^{2}+J_{2}^{2}+J_{3}^{2}\right)+\frac{1}{2}\left(\alpha_{1} x_{1}^{2}+\alpha_{2} x_{2}^{2}+\alpha_{3} x_{3}^{2}\right)
$$

associated with the integrable Clebsch system on $e^{*}(3)$, one gets this Hamiltonian in terms of the elliptic variables
$H=\frac{2}{u_{1}-u_{2}}\left(\varphi\left(u_{1}\right)\left(\pi_{1}+b f_{1}\right)^{2}-\varphi\left(u_{2}\right)\left(\pi_{2}+b f_{2}\right)^{2}\right)+\frac{b^{2}}{2 a^{2}}-\frac{a^{2}\left(u_{1}+u_{2}-\sum_{j=1}^{3} \alpha_{j}\right)}{2}$.
Here $f_{1,2}$ are functions on u_{1} and u_{2} and, therefore, the Hamiltonian H belongs to the Stäckel family of integrals of motion at $b=0$ only, i.e. for the Neumann system on the sphere [2]. Moreover, $f_{1,2}$ are elliptic functions and, therefore, this Hamiltonian H cannot be rewritten as rational quasi-Stäckel Hamiltonian introduced in [4].

Thus we have to fully appreciate that elliptic variables $u_{1,2}$ and $\pi_{1,2}$ cannot be the separation variables for the Hamilton-Jacobi equation associated with the Clebsch system at $b \neq 0$. The similar result has been obtained in $[5,6]$ by using velocities

$$
\dot{u}_{1,2}=\frac{\mp 4 \varphi\left(u_{1,2}\right)\left(\pi_{1,2}+b f_{1,2}\right)}{u_{1}-u_{2}}
$$

instead of the momenta $\pi_{1,2}$. This result completely refutes the conclusion of the paper [7] about separability of the Clebsch system in the 'Kowalevski variables', which in fact coincide with the elliptic coordinates (5).

On the other hand, we can substitute Darboux variables $u_{1,2}$ and $\pi_{1,2}$ into the usual Stäckel integrals of motion and get a whole family of integrable systems on the manifold $e^{*}(3)$, which are separable in these variables. The main problem in this widely known Jacobi method is how to single out integrable systems interesting in physics from this huge family.

Acknowledgment

The research was partially supported by the RFBR grant 06-01-00140.

References

[1] Novikov S P 1982 Hamiltonian formalism and multi-valued analog of Morse theory Usp. Mat. Nauk 37 3-49
[2] Kalnins E G 1986 Separation of Variables for Riemannian Spaces of Constant Curvature (Essex: Longman Scientific and Technical)
[3] Abramowitz M and Stegun I 1965 Handbook of Mathematical Functions (New York: Dover) p 1046
[4] Marikhin V G and Sokolov V V 2006 On the quasi-Stäckel Hamiltonians Usp. Mat. Nauk 60 175-6
[5] Kharlamova E I 1959 O dvigenii tverdogo tela vokrug nepodvignoj tochki v tsentral'nom n'yutonovskom pole Izv. Sib. Otd. AN SSSR 67-17
[6] Komarov I V and Tsiganov A V 2005 On a trajectory isomorphism of the Kowalevski gyrostat and the Clebsch problem J. Phys. A: Math. Gen. 38 2917-27
[7] Marikhin V G and Sokolov V V 2005 Separation of variables on a non-hyperelliptic curve Regular Chaotic Dyn. 10 59-70

