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Abstract
We introduce elliptic coordinates on the dual space to the Lie algebra e(3) and
discuss the separability of the Clebsch system in these variables. The proposed
Darboux coordinates on e∗(3) coincide with the usual elliptic coordinates on
the cotangent bundle of the two-dimensional sphere at the zero value of the
corresponding Casimir function.

PACS numbers: 02.30.Ik, 02.30.Uu, 02.30.Zz, 02.40.Yy, 45.30.+s

The Lie algebra e(3) = so(3)⊕R
3 of the Lie group of Euclidean motions of R

3 is a semidirect
sum of an algebra so(3) and an Abelian ideal R

3. For convenience we shall use the invariant
inner product to identify the dual of the Lie algebra, namely e∗(3), with the Lie algebra e(3).

On the dual space e∗(3) with coordinates J = (J1, J2, J3) ∈ so(3) � R
3 and

x = (x1, x2, x3) ∈ R
3 the Lie–Poisson bracket is defined by

{Ji, Jj } = εijkJk, {Ji, xj } = εijkxk, {xi, xj } = 0, (1)

where εijk is the sign of the permutation (ijk) of (123). The Lie–Poisson bracket (1) is
degenerated and has two Casimir functions

A = |x|2 ≡
3∑

k=1

x2
k , B = 〈x, J 〉 ≡

3∑
k=1

xkJk. (2)

Here 〈x, J 〉 stands for the standard Euclidean scalar product in R
3. The generic symplectic

leaf,

Oab = {x, J : A = a2, B = b}, (3)

is a four-dimensional symplectic manifolds, which is topologically equivalent to the cotangent
bundle T ∗

S
2 of the two-dimensional sphere S

2 = {x ∈ R
3, |x| = a} [1].

If b = 0, then there exists a symplectic transformation

ρ : (p, x) → J = p ∧ x, Ji =
n=3∑

j,k=1

εijkpjxk, (4)
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which identify T ∗
S

2 ⊂ T ∗
R

3 and Oa0. Here p∧x means the standard Euclidean cross product
in R

3 and vector p is canonically conjugated to x momenta in T ∗
R

3, {pi, xj } = δij , such that
〈p, x〉 = 0.

If b �= 0, the symplectic structure of manifold Oab differs from the standard symplectic
structure of T ∗

S
2 by a magnetic term proportional to b [1].

The aim of this letter is to describe this magnetic term with the help of elliptic coordinates
on the sphere S

2 lifted to the Darboux variables on the manifold e∗(3) by b �= 0.
The elliptic coordinates u1, u2 on S

2 with parameters α1 < α2 < α3 are defined as roots
of the equation

e(λ) =
3∑

j=1

x2
j

λ − αj

= a2(λ − u1)(λ − u2)

ϕ(λ)
= 0, (5)

where ϕ(λ) = ∏3
j=1(λ − αj ) and |x| = a, see [2]. Like the elliptic coordinates in R

3, the
elliptic coordinates on S

2 are also orthogonal and only locally defined. They take values in
the intervals

α1 < u1 < α2 < u2 < α3. (6)

By using the Lie–Poisson bracket (1) we can prove that elliptic coordinates u1,2 and variables

π0
1,2 = h(u1,2), h(λ) = 1

2a2

3∑
j=1

xj (x ∧ J )j

λ − αj

(7)

satisfy the following relations:

{u1, u2} = 0,
{
π0

i , uj

} = δij ,
{
π0

1 , π0
2

} = ib

4a

u2 − u1√
ϕ(u1)ϕ(u2)

. (8)

These relations may be easily obtained by means of the Poisson brackets between the generating
functions e(λ) and h(µ):

{e(λ), e(µ)} = 0, {e(λ), h(µ)} = −a−2e(λ)e(µ) − e(λ) − e(µ)

λ − µ
,

{h(λ), h(µ)} = b

4a2

x1x2x3(λ − µ)(α1 − α2)(α2 − α3)(α3 − α1)

ϕ(λ)ϕ(µ)
.

If b = 0 relations (8) yield the well-known fact that variables u1,2 and π0
1,2 are the Darboux

coordinates on the manifold T ∗
S � Oa0.

The coordinates ui and the parameters αj can be subjected to a simultaneous linear
transformation ui → βui + γ and αj → βαj + γ , so it is always possible to choose

α1 = 0, α2 = 1, α3 = k2 > 1.

Using relations (8) and this choice of parameters αj we can prove the following:

Proposition 1. If b �= 0, elliptic coordinates u1,2 (5) and the corresponding momenta

π1,2 = π0
1,2 − bf1,2, f1,2 = u1,2

2a
√

ϕ(u1,2)
F

(√
k2 − u2,1

k
,

k

k2 − 1

)
(9)

form a complete set of the Darboux variables on the manifold e∗(3)

{u1, u2} = {π1, π2} = 0, {πi, uj } = δij ,

which are real variables in their domain of definition (6). Here F(z, k) is incomplete elliptic
integral of the first kind, which is identical to the inverse function of the elliptic Jacobi function
sn(z, k) [3].
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Proof. The functions f1,2 depend on the coordinates u1,2 and, therefore, we have to verify one
relation only

{π1, π2} = {
π0

1 , π0
2

} − b
{
π0

1 , f2
}

+ b
{
π0

2 , f1
} = {

π0
1 , π0

2

} − b

(
∂f2

∂u1
− ∂f1

∂u2

)
= 0.

This relation follows from (8) and properties of the incomplete elliptic integral of the first kind
F(z, k). �

So, equations (5), (7) and (9) define elliptic variables u and π on e∗(3) as functions on
initial variables x and J . The inverse transformation (u, π) → (x, J ) reads as

xj = a

√
(αj − u1)(αj − u2)

(αj − αm)(αj − αn)
, Jj = a−2(bxj + (z ∧ x)j ), (10)

where m �= j �= n and entries of the vector z are given by

zj = 2xj

u1 − u2

(
ϕ(u1)(π1 + bf1)

αj − u1
− ϕ(u2)(π2 + bf2)

αj − u2

)
.

Like the elliptic coordinates in R
n and on S

n [2], the elliptic variables on e∗(3) may
be successfully exploited in the theory of integrable systems. For instance, substituting
expressions (10) into the quadratic Hamiltonian

H = 1
2

(
J 2

1 + J 2
2 + J 2

3

)
+ 1

2

(
α1x

2
1 + α2x

2
2 + α3x

2
3

)
,

associated with the integrable Clebsch system on e∗(3), one gets this Hamiltonian in terms of
the elliptic variables

H = 2

u1 − u2
(ϕ(u1)(π1 + bf1)

2 − ϕ(u2)(π2 + bf2)
2) +

b2

2a2
− a2

(
u1 + u2 − ∑3

j=1 αj

)
2

.

Here f1,2 are functions on u1 and u2 and, therefore, the Hamiltonian H belongs to the Stäckel
family of integrals of motion at b = 0 only, i.e. for the Neumann system on the sphere [2].
Moreover, f1,2 are elliptic functions and, therefore, this Hamiltonian H cannot be rewritten as
rational quasi-Stäckel Hamiltonian introduced in [4].

Thus we have to fully appreciate that elliptic variables u1,2 and π1,2 cannot be the
separation variables for the Hamilton–Jacobi equation associated with the Clebsch system
at b �= 0. The similar result has been obtained in [5, 6] by using velocities

u̇1,2 = ∓4ϕ(u1,2)(π1,2 + bf1,2)

u1 − u2

instead of the momenta π1,2. This result completely refutes the conclusion of the paper [7]
about separability of the Clebsch system in the ‘Kowalevski variables’, which in fact coincide
with the elliptic coordinates (5).

On the other hand, we can substitute Darboux variables u1,2 and π1,2 into the usual Stäckel
integrals of motion and get a whole family of integrable systems on the manifold e∗(3), which
are separable in these variables. The main problem in this widely known Jacobi method is
how to single out integrable systems interesting in physics from this huge family.
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